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Abstract

In the paper, we describe a numerical technique allowing the solution of compressible inviscid flow with a wide range of
Mach numbers. The method is based on the application of the discontinuous Galerkin finite element method for the space
discretization of the Euler equations written in the conservative form, combined with a semi-implicit time discretization.
Special attention is paid to the treatment of boundary conditions and to the stabilization of the method in the vicinity of
discontinuities avoiding the Gibbs phenomenon. As a result we obtain a technique allowing the numerical solution of flows
with practically all Mach numbers without any modification of the Euler equations. This means that the proposed method
can be used for the solution of high speed flows as well as low Mach number flows. Presented numerical tests prove the
accuracy of the method and its robustness with respect to the Mach number.
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1. Introduction

In the numerical solution of compressible flow, it is necessary to overcome several obstacles. Let us mention
the necessity to resolve accurately shock waves, contact discontinuities and (in viscous flow) boundary layers,
wakes and their interaction. All these phenomena are connected with the simulation of high speed flow with
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high Mach numbers. However, it appears that the solution of low Mach number flow is also rather difficult.
This is caused by the stiff behaviour of numerical schemes and acoustic phenomena appearing in low Mach
number flows at incompressible limit. In this case, standard finite volume schemes fail. This led to the devel-
opment of special finite volume techniques allowing the simulation of compressible flow at incompressible
limit, which are based on modifications of the Euler or Navier–Stokes equations. We can mention works
by Klein, Munz, Meister, Wesseling and their collaborators (see, e.g. [17,21], [19] Chapter 5, or [26], Chapter
14). However, these techniques could not be applied to the solution of high speed flow. Therefore, further
attempts were concentrated on the extension of these methods to the solution of flows at all speeds. A success
in this direction was achieved by several authors. Let us mention, for example, the works by Wesseling et al.
[22,25,27], Parker and Munz [20], Meister [18] and Darwish et al. [4]. Main ingredients of these techniques are
finite volume schemes applied on staggered grids, combined with multigrid, the use of the pressure-correction,
multiple pressure variables and flux preconditioning.

In our paper, we describe a new numerical technique allowing the solution of compressible flow with a wide
range of the Mach number without any modification of the governing equations, written in the conservation
form with conservative variables. This technique is based on the discontinuous Galerkin finite element method

(DGFEM), which can be considered as a generalization of the finite volume as well as finite element methods,
using advantages of both these techniques. It employs piecewise polynomial approximations without any
requirement on the continuity on interfaces between neighbouring elements.

The DGFEM was used for the numerical simulation of the compressible Euler equations by Bassi and
Rebay in [1], where the space DG discretization was combined with explicit Runge–Kutta time discretiza-
tion. In [2] Baumann and Oden describe an hp version of the space DG discretization with explicit time
stepping to compressible flow. Van der Vegt and van der Ven apply space–time discontinuous Galerkin
method to the solution of the Euler equations in [23], where the discrete problem is solved with the aid
of a multigrid accelerated pseudo-time-integration. For a survey of DGFE techniques we refer the reader
to [3].

In most of works, explicit Euler or Runge–Kutta time discretization is used. Explicit time stepping for the
solution of the Euler equations is very popular particularly in the framework of the finite difference and finite
volume schemes. Its advantage is a simple algorithmization. However, it requires to satisfy rather restrictive
CFL-stability conditions, which is quite inconvenient over nonuniform unstructured anisotropic meshes.
Moreover, an explicit time stepping fails in the numerical solution of flows with low Mach numbers at incom-
pressible limit. Therefore, it is suitable to consider implicit methods for the numerical solution of the Euler
equations.

In [8] the discontinuous Galerkin space semidiscretization is combined with a semi-implicit time discretiza-
tion. In this way we obtain an efficient numerical scheme requiring the solution of only one linear system on
each time level. It was shown in [8] that the proposed technique is applicable to the solution of stationary as
well as nonstationary flow, the accuracy was established and the efficiency was proven in comparison with
explicit Runge–Kutta methods.

Here we extend this approach so that the developed technique allows the solution of compressible flow with
a wide range of Mach numbers. We explain important details of the method: the derivation of the scheme
based on the DGFE space semidiscretization, higher order semi-implicit time discretization, the treatment
of boundary conditions and the limiting of order of accuracy near discontinuities in order to avoid the Gibbs
phenomenon. Further, with the aid of test problems we show that the method allows the solution of compress-
ible inviscid flow with a wide range of Mach numbers.

In Section 2 the continuous problem describing inviscid compressible flow is formulated. In Section 3 the
discontinuous Galerkin space semidiscretization and semi-implicit time stepping are introduced. Section 4 is
concerned with the treatment of boundary conditions. In Section 5, the attention is paid to the stabilization of
the scheme in the vicinity of discontinuities. Finally, in Section 6 we present examples of the DGFE solutions
of an inviscid compressible flow showing the accuracy and robustness of the method. The summary of results
and outlook are contained in Section 7.

The computational results show that the presented method is unconditionally stable and is applicable
to the numerical solution of inviscid compressible high speed flow as well as flow with a very low Mach
number.
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2. Governing equations

Because of simplicity, we shall be concerned with the treatment of two-dimensional flow, but the method
can be applied to 3D flow as well. The system of the Euler equations describing 2D inviscid flow can be written
in the form
ow

ot
þ
X2

s¼1

of sðwÞ
oxs

¼ 0 in QT ¼ X� ð0; T Þ; ð1Þ
where X � R2 is a bounded domain occupied by gas, T > 0 is the length of a time interval,
w ¼ ðw1; . . . ;w4ÞT ¼ ðq; qv1; qv2;EÞT ð2Þ

is the so-called state vector and
f sðwÞ ¼ ðqvs; qvsv1 þ ds1p; qvsv2 þ ds2p; ðE þ pÞvsÞT ð3Þ

are the inviscid (Euler) fluxes of the quantity w in the directions xs; s ¼ 1; 2. We use the following notation: q
is the density, p is the pressure, E is the total energy, v ¼ ðv1; v2Þ is the velocity, and dsk is the Kronecker sym-
bol. The equation of state implies that
p ¼ ðc� 1ÞðE � qjvj2=2Þ: ð4Þ

Here c > 1 is the Poisson adiabatic constant. The system (1)–(4) is diagonally hyperbolic. It is equipped with the
initial condition
wðx; 0Þ ¼ w0ðxÞ; x 2 X; ð5Þ

and the boundary conditions, which are treated in Section 4.

We define the flux of the quantity w in the direction n ¼ ðn1; n2Þ 2 IR2; n2
1 þ n2

2 ¼ 1, by
Fðw; nÞ ¼
X2

s¼1

f sðwÞns ð6Þ
and its Jacobi matrix
Pðw; nÞ ¼ DFðw; nÞ
Dw

¼
X2

s¼1

AsðwÞns; ð7Þ
where
AsðwÞ ¼
Df sðwÞ

Dw
; s ¼ 1; 2; ð8Þ
are the Jacobi matrices of the mappings fs. It is possible to show that f s; s ¼ 1; 2, are homogeneous mappings
of order one, which implies that
f sðwÞ ¼ AsðwÞw; s ¼ 1; 2; ð9Þ

and
Fðw; nÞ ¼ Pðw; nÞw: ð10Þ
3. Discretization

3.1. Discontinuous Galerkin space semidiscretization

Let Xh be a polygonal approximation of X. By Th we denote a partition of Xh consisting of elements
Ki 2 T h; i 2 I , e.g. triangles or quadrilaterals. (I � Zþ ¼ f0; 1; 2; . . .g is a suitable index set.) By Cij we denote
a common edge between two neighbouring elements Ki and Kj. We set sðiÞ ¼ fj 2 I ; Kj is a neighbour of Kig.
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The boundary oXh is formed by a finite number of faces of elements Ki adjacent to oXh. We denote all these
boundary faces by Sj, where j 2 Ib � Z� ¼ f�1;�2; . . .g. Now we set cðiÞ ¼ fj 2 Ib; Sj is a face of Ki 2 T hg
and Cij ¼ Sj for Ki 2 T h such that Sj � oKi; j 2 Ib: For Ki not containing any boundary face Sj we set
cðiÞ ¼ ;. Obviously, sðiÞ \ cðiÞ ¼ ; for all i 2 I . Now, if we write SðiÞ ¼ sðiÞ [ cðiÞ, we have
oKi ¼
[

j2SðiÞ
Cij; oKi \ oXh ¼

[
j2cðiÞ

Cij: ð11Þ
The symbol nij ¼ ððnijÞ1; ðnijÞ2Þ will denote the unit outer normal to oKi on the side Cij.
The approximate solution will be sought at each time instant t as an element of the finite-dimensional space
Sh ¼ Sr;�1ðXh; T hÞ ¼ fv; vjK 2 P rðKÞ 8K 2 T hg4
; ð12Þ
where r P 0 is an integer and Pr(K) denotes the space of all polynomials on K of degree 6r. Functions u 2 Sh

are in general discontinuous on interfaces Cij. By ujCij
and ujCji

we denote the values of u on Cij considered
from the interior and the exterior of Ki, respectively. The symbols
huiij ¼
1

2
ðujCij

þ ujCji
Þ; ½u�ij ¼ ujCij

� ujCji
ð13Þ
denote the average and jump of a function u on Cij ¼ Cji.
In order to derive the discrete problem, we multiply (1) by a test function u 2 Sh, integrate over any element

Ki; i 2 I , apply Green’s theorem and sum over all i 2 I . Then we approximate fluxes through the faces Cij with
the aid of a numerical flux H ¼ Hðu;w; nÞ in the form
Z
Cij

X2

s¼1

f sðwðtÞÞðnijÞs � u dS �
Z

Cij

HðwhðtÞjCij
;whðtÞjCji

; nijÞ � u dS: ð14Þ
If we introduce the forms
ðwh;uhÞh ¼
Z

Xh

wh � uhdx; ð15Þ

~bhðwh;uhÞ ¼ �
X
K2T h

Z
K

X2

s¼1

f sðwhÞ �
ouh

oxs
dxþ

X
Ki2T h

X
j2SðiÞ

Z
Cij

HðwhjCij
;whjCji

; nijÞ � uh dS; ð16Þ
we can define an approximate solution of (1) as a function wh satisfying the conditions
ðaÞ wh 2 C1ð½0; T �; ShÞ;

ðbÞ d

dt
ðwhðtÞ;uhÞh þ ~bhðwhðtÞ;uhÞ ¼ 0 8uh 2 Sh; 8t 2 ð0; T Þ;

ðcÞ whð0Þ ¼ Phw0;

ð17Þ
where Phw0 is the L2-projection of w0 from the initial condition (5) on the space Sh. If we set r=0, then we
obviously obtain the finite volume method.

The numerical flux H is assumed to be (locally) Lipschitz-continuous, consistent, i.e.
Hðw;w; nÞ ¼
X2

s¼1

f sðwÞns;
and conservative, i.e.
Hðu;w; nÞ ¼ �Hðw; u;�nÞ:
3.2. Time discretization

Relation (17)(b) represents a system of ordinary differential equations, which can be solved by a suitable
numerical method. Usually, Runge–Kutta schemes are applied. However, they are conditionally stable and
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the time step is strongly limited by the CFL-stability condition. It is well known that for the discontinuous
Galerkin space semidiscretization the stability condition becomes very restrictive with increasing polynomial
degree r. Another possibility is to use the fully implicit backward Euler method, but it leads to a large system of
highly nonlinear algebraic equations, whose numerical solution is rather complicated. Our aim is to obtain a
higher order unconditionally stable scheme, which would require the solution of a linear system on each time
level. This is carried out with the aid of a suitable partial linearization of the form ~bh. In what follows, we
consider a partition 0 ¼ t0 < t1 < t2 � � � of the time interval (0,T) and set sk ¼ tkþ1 � tk. We use the symbol
wk

h for the approximation of whðtkÞ.
In [8] we described a new DG semi-implicit technique which is suitable for an efficient solution of inviscid

stationary as well as nonstationary compressible flow. This technique is based on the linearization of the form
~bh carried out with the aid of the homogeneity of the fluxes fs and the use of the Vijayasundaram numerical
flux (cf. [24] or [12], Section 3.3.4). In this way we obtain the form
bhðwk
h;w

kþ1
h ;uhÞ ¼ �

X
K2T h

Z
K

X2

s¼1

Asðwk
hðxÞÞwkþ1

h ðxÞ �
ouhðxÞ

oxs
dxþ

X
Ki2T h

X
j2SðiÞ

Z
Cij

½Pþðhwk
hiij; nijÞwkþ1

h jCij

þ P�ðhwk
hiij; nijÞwkþ1

h jCji
� � uh dS; ð18Þ
which is linear with respect to the second argument wkþ1
h and the third argument uh. Here, P� ¼ P�ðw; nÞ rep-

resents the positive/negative part of the matrix P defined on the basis of its diagonalization (see, e.g. [12], Sec-
tion 3.1):
P ¼ TDT�1; D ¼ diag ðk1; . . . ; k4Þ; ð19Þ
where k1; . . . ; k4 are the eigenvalues of P. Then we set
D� ¼ diagðk�1 ; . . . ; k�4 Þ; P� ¼ TD�T�1; ð20Þ
where kþ ¼ maxfk; 0g and k� ¼ minfk; 0g.
On the basis of the above considerations we obtain the following semi-implicit scheme: For each k P 0 find

wkþ1
h such that
ðaÞ wkþ1
h 2 Sh;

ðbÞ wkþ1
h � wk

h

sk
;uh

� �
h

þ bhðwk
h;w

kþ1
h ;uhÞ ¼ 0 8uh 2 Sh; k ¼ 0; 1; . . . ;

ðcÞ w0
h ¼ Phw0:

ð21Þ
This is a first order accurate scheme in time. In the solution of nonstationary flows, it is necessary to apply a
scheme, which is sufficiently accurate in space as well as in time. One possibility is to apply the following two
step second order time discretization: In (18), the second order approximation ~wkþ1

h of whðtkþ1Þ obtained with
the aid of extrapolation,
~wkþ1
h ¼ sk þ sk�1

sk�1

wk
h �

sk

sk�1

wk�1
h ; ð22Þ
which replaces the state wk
h in the form bh, and the second order backward difference approximation of the time

derivative of the solution at time tk+1 yield the following two-step second-order scheme: For each k P 1 find
wkþ1

h such that
ðaÞ wkþ1
h 2 Sh;

ðbÞ 2sk þ sk�1

skðsk þ sk�1Þ
ðwkþ1

h ;uhÞh þ bhð~wkþ1
h ;wkþ1

h ;uhÞ ¼
sk þ sk�1

sksk�1

ðwk
h;uhÞh �

skðwk�1
h ;uhÞh

sk�1ðsk þ sk�1Þ
8uh 2 Sh; k ¼ 0; 1; . . . ;

ðcÞ w0
h ¼ Phw0;w1

h obtained by the Runge–Kutta method:

ð23Þ
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The linear algebraic system equivalent to (21)(b) or (23)(b) is solved either by a direct solver UMFPACK [5] in
case that the number of unknowns does not exceed 105, or by the GMRES method with a block diagonal pre-
conditioning in case of larger systems.

In order to guarantee the stability of the scheme, we use the CFL condition
sk max
Ki2T h

1

jKij
ðmax

j2SðiÞ
jCijjkmax

Pðwk
h
jCij

;nijÞÞ 6 CFL; ð24Þ
where jKij denotes the area of Ki, jCijj the length of the edge Cij, CFL a given constant and kmax
Pðwk

hjCij
;nijÞ is the

maximal eigenvalue of the matrix Pðwk
hjCij

; nijÞ defined by (7), where the maximum is taken over Cij. Numerical
experiments show that the CFL number can be practically unlimited.
4. Boundary conditions

If Cij � oXh, i.e. j 2 cðiÞ, it is necessary to specify the boundary state wjCji
appearing in the numerical flux H

in the definition of the inviscid form bh. The appropriate treatment of boundary conditions plays a crucial role
in the solution of low Mach number flows.

If Cij is a part of a fixed impermeable wall, then v � n ¼ 0 and we use the approximation
Z
Cij

Hðwkþ1
h jCij

;wkþ1
h jCji

; nijÞ � uh dS �
Z

Cij

FW ðwk
h;w

kþ1
h ; nijÞ � uh dS; ð25Þ
where FW is obtained from (6), where we set v � n ¼ 0, apply the linearization with the aid of the Taylor expan-
sion and use (10). In this way we obtain
FW ðwk
h;w

kþ1
h ; nÞ ¼ Pðwk

h; nÞwkþ1
h : ð26Þ
Under the condition v � n ¼ 0 we have
Pðw; nÞ ¼ ðc� 1Þ

0 0 0 0

ðv2
1 þ v2

2Þn1=2 �v1n1 �v2n1 n1

ðv2
1 þ v2

2Þn2=2 �v1n2 �v2n2 n2

0 0 0 0

0
BBB@

1
CCCA: ð27Þ
On the inlet and outlet it is necessary to use nonreflecting boundary conditions transparent for acoustic effects
coming from inside of X. Therefore, characteristics based boundary conditions are used.

Using the rotational invariance, we transform the Euler equations to the coordinates ~x1, parallel with the
normal direction nij to the boundary, and ~x2, tangential to the boundary, neglect the derivative with respect to
~x2 and linearize the system around the state qij ¼ QðnijÞwjCij

, where
QðnijÞ ¼

1; 0; 0; 0

0; ðnijÞ1; ðnijÞ2; 0

0; �ðnijÞ2; ðnijÞ1; 0

0; 0; 0; 1

0
BBB@

1
CCCA ð28Þ
is the rotational matrix. Then we obtain the linear system
oq

ot
þ A1ðqijÞ

oq

o~x1

¼ 0; ð29Þ
for the transformed vector-valued function q ¼ QðnijÞw, considered in the set ð�1; 0Þ � ð0;1Þ and equipped
with the initial and boundary conditions
qð~x1; 0Þ ¼ qij; ~x1 < 0;

qð0; tÞ ¼ qji; t > 0:
ð30Þ
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The goal is to choose qji in such a way that this initial-boundary value problem is well posed, i.e. has a unique
solution. The method of characteristics leads to the following process:

Let us put q	ji ¼ QðnijÞw	ji, where w	ji is a given boundary state at the inlet or outlet. We calculate the eigen-
vectors rs corresponding to the eigenvalues ks; s ¼ 1; . . . ; 4, of the matrix A1ðqijÞ, arrange them as columns in
the matrix T and calculate T�1 (explicit formulae can be found in [12], Section 3.1). Now we set
a ¼ T�1qij; b ¼ T�1q	ji ð31Þ
and define the state qji by the relations
qji :¼
X4

s¼1

csrs; cs ¼
as; ks P 0;

bs; ks < 0:

�
ð32Þ
Finally, the sought boundary state wjCji
is defined as
wjCji
¼ wji ¼ Q�1ðnijÞqji: ð33Þ
5. Shock capturing

For high speed flows with shock waves and contact discontinuities it is necessary to avoid the Gibbs phe-
nomenon manifested by spurious overshoots and undershoots in computed quantities near discontinuities and
steep gradients. These phenomena do not occur in low Mach number regimes, however in the transonic case
they cause instabilities in the semi-implicit solution.

One possibility for avoiding the Gibbs phenomenon is the use of the limiting of order of accuracy of the
method in the vicinity of discontinuities. The limiting technique is motivated by the paper [16], on the basis
of which the left-hand side of (21)(b) and (23)(b) is augmented by an artificial viscosity form. However, since
this form is nonzero also in regions, where the exact solution is regular, a small nonphysical entropy produc-
tion can appear in these regions. Therefore, we combine this technique with the approach proposed in [10]. It
is based on the discontinuity indicator gk(i) defined by
gkðiÞ ¼
Z

oKi

½qk
h�

2 dS=ðhKi jKij3=4Þ; Ki 2 T h; ð34Þ
in the 2D case. (By ½qk
h� we denote the jump of the density on oKi at time tk.) The indicator gk(i) was con-

structed in such a way that it takes an anisotropy of the computational mesh into account. It was shown
in [10] that the indicator gk(i) identifies discontinuities safely on unstructured and anisotropic meshes. Now
we introduce the discrete discontinuity indicator
GkðiÞ ¼ 0 if gkðiÞ < 1; GkðiÞ ¼ 1; if gkðiÞP 1; Ki 2 T h; ð35Þ
and add the artificial viscosity form
bhðwk
h;w

kþ1
h ;uÞ ¼ m1

X
i2I

hKiG
kðiÞ

Z
Ki

rwkþ1
h � ru dx ð36Þ
with m1 = O(1) to the left-hand side of (21)(b) and (23)(b). Because the artificial viscosity form is rather local,
we propose to augment the left-hand side of (21)(b) and (23)(b) by adding the form
Jhðwk
h;w

kþ1
h ;uÞ ¼ m2

X
i2I

X
j2sðiÞ

1

2
ðGkðiÞ þ GkðjÞÞ

Z
Cij

½wkþ1
h � � ½u� dS; ð37Þ
where m2 = O(1), which allows to strengthen the influence of neighbouring elements and improves the behav-
iour of the method in the case, when strongly unstructured and/or anisotropic meshes are used.
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Thus, the resulting scheme obtained by limiting of (21)(b) reads:
ðaÞ wkþ1
h 2 Sh;

ðbÞ wkþ1
h � wk

h

sk
;uh

� �
h

þ bhðwk
h;w

kþ1
h ;uhÞ þ bhðwk

h;w
kþ1
h ;uhÞ þ Jhðwk

h;w
kþ1
h ;uhÞ ¼ 0

8uh 2 Sh; k ¼ 0; 1; . . . ;

ðcÞ w0
h ¼ Phw0:

ð38Þ
(Similarly, we obtain a stabilized version of scheme (23).)
This method successfully overcomes problems with the Gibbs phenomenon in the context of the semi-impli-

cit scheme. It is important to note that Gk(i) vanishes in regions, where the solution is regular. Therefore, the
scheme does not produce any nonphysical entropy in these regions (see Fig. 12).

Remark 1. In order to obtain an accurate, physically admissible solution, it is necessary to use isoparametric
elements near curved boundaries (see [1] or [7]). In our computations we proceed in such a way that a reference
triangle is transformed by a bilinear mapping onto the approximation of a curved triangle adjacent to the
boundary oX.

6. Numerical examples

In this section, we present the solution of some test problems in order to demonstrate the accuracy and
robustness of the proposed method. The computational grids were constructed with the aid of the anisotropic
mesh adaptation technique [6]. In all examples quadratic elements (r = 2) were applied. Steady state solutions
were obtained via time stabilization for ‘‘t!1’’. This means that scheme (38) was used as an iterative process
for ‘‘k !1’’. This process was stopped, when the approximation of the time derivative satisfied the condition
wkþ1
h � wk

h

sk

����
����

L1ðXÞ
< 10�8: ð39Þ
6.1. Low Mach number flow

6.1.1. Irrotational flow past a Joukowski airfoil

First we consider flow past a negatively oriented Joukowski profile given by parameters D ¼ 0:07; a ¼ 0:5;
h ¼ 0:05 (under the notation from [11], Section 2.2.68) with zero angle of attack. The far field quantities are
constant, which implies that the flow is irrotational and homoentropic. Using the complex function method
from [11], we can obtain the exact solution of incompressible inviscid irrotational flow satisfying the
Kutta–Joukowski trailing condition, provided the velocity circulation around the profile, related to the mag-
nitude of the far field velocity, cref ¼ 0:7158. We assume that the far field Mach number of compressible flow
M1 ¼ 0:0001. The computational domain is of the form of a square with side of the length equal to 10 chords
of the profile. The mesh (in the whole computational domain) was formed by 5418 triangular elements and
refined towards the profile. Fig. 1 shows a detail near the profile of the velocity isolines for the exact solution
of incompressible flow and for the approximate solution of compressible flow. In Fig. 2, pressure isolines of
incompressible and compressible flow are plotted. Fig. 3 shows streamlines of the computed compressible
flow. We see that the flow past the trailing edge is smooth. Further, in Figs. 4 and 5, the velocity distribution
and pressure coefficient distribution, respectively, past the profile is plotted in the direction from the leading
edge to the trailing edge (
 
 
 – exact solution of incompressible flow, — – approximate solution of compress-
ible flow). The pressure coefficient was defined as 107 � ðp � p1Þ, where p1 denotes the far field pressure.

The maximum density variation is 1:04� 10�8. The computed velocity circulation related to the magnitude
of the far field velocity is crefcomp ¼ 0:7205, which gives the relative error 0.66% with respect to the theoretical
value cref obtained for incompressible flow.



Fig. 2. Pressure isolines for the exact solution of incompressible flow (left) and approximate solution of compressible flow (right).

Fig. 1. Velocity isolines for the exact solution of incompressible flow (left) and approximate solution of compressible flow (right).

Fig. 3. Compressible flow past a Joukowski profile, approximate solution, streamlines.
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Fig. 4. Flow past a Joukowski profile, velocity distribution along the profile: 
 
 
 – exact solution of incompressible flow, — –
approximate solution of compressible flow.
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Fig. 6. Rotational incompressible flow past a half-cylinder, exact solution, stream
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In order to establish the quality of the computed pressure of the low Mach compressible flow in a quanti-
tative way, we introduce the function
lines.
B ¼ p
q
þ 1

2
jvj2; ð40Þ
which is constant for incompressible, inviscid, irrotational flow, as follows from the Bernoulli equation. In the
considered compressible case, the relative variation of the function B, i.e. ðBmax � BminÞ=Bmax ¼ 3:84� 10�6.
This means that the Bernoulli equation is satisfied with a small error in the case of the compressible low Mach
number flow computed by the developed method.

6.1.2. Rotational flow past a circular half-cylinder

In the second example we present the comparison of the exact solution of incompressible inviscid rotational
flow past a circular half-cylinder, with center at the origin and diameter equal to one, with an approximate
solution of compressible flow. The far field Mach number is 0.0001 and the far field velocity has the compo-
nents v1 ¼ x2; v2 ¼ 0. The analytically exact solution was obtained in [14]. This flow is interesting for its corner
vortices. The computational domain was chosen in the form of a rectangle with the length 10 and width 5,
from which the half-cylinder was cut off. The mesh was formed by 3541 elements. We present here computa-
tional results in the vicinity of the half-cylinder. Figs. 6 and 7 show streamlines of incompressible and com-
pressible flow, respectively. In Figs. 8 and 9 we see the comparison of velocity isolines. Fig. 10 shows the
velocity distribution along the half-cylinder in dependence on the variable #� p=2, where # is the angle from
cylindrical coordinates (
 
 
 – exact solution of incompressible flow, — – approximate solution of compress-
ible flow). The maximum density variation is 3:44� 10�9.
Fig. 7. Rotational compressible flow past a half-cylinder, approximate solution, streamlines.
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Fig. 9. Rotational compressible flow past a half-cylinder, approximate solution, velocity isolines.

Fig. 8. Rotational incompressible flow past a half-cylinder, exact solution, velocity isolines.
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6.1.3. Accuracy of the method

An interesting question is the order of accuracy of the semi-implicit DG method. Theoretical analysis of a
one-step semi-implicit DG scheme applied to a scalar nonstationary nonlinear convection–diffusion problem is
contained in [9].

We tested numerically the accuracy of the piecewise quadratic DG approximations of the stationary invis-
cid flow past a circular cylinder with the far field velocity parallel to the axis x1 and the Mach number
M1 ¼ 10�4. The problem was solved in a computational domain of the form of a square with sides of the
length equal to 20 diameters of the cylinder. Table 1 presents the behaviour of the error and experimental
order of convergence (EOC) of the approximate solution wh of compressible flow to the exact incompressible
solution, measured in L1ðXhÞ-norm. We see that the experimental order of convergence is close to 2.5, which is
comparable to theoretical error estimates obtained (for L2ðXÞ-norm) in [13].
Table 1
Error in L1-norm and corresponding experimental order of convergence for the approximation of incompressible flow by low Mach
number compressible flow with respect to h! 0

#T h kerrorkL1ðXhÞ EOC

1251 5.05E�01 –
1941 4.23E�01 0.406
5031 2.77E�02 2.86
8719 6.68E�03 2.59
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6.2. Transonic flow

The possibility to apply the proposed method to high speed flow and the performance of shock capturing
terms from Section 5 is tested on the flow through the GAMM channel with a 10% circular bump and the inlet
Mach number equal to 0.67. In this case a conspicuous shock wave is developed. Figs. 11 and 12 show Mach
number isolines and entropy isolines computed by scheme (38). One can see that this scheme yields the entropy
production on the shock wave only, which is correct from the physical point of view. In Fig. 13, the density
distribution on the lower wall is plotted. We see that the shock wave is very thin and is ended by the well
resolved Zierep singularity (small local maximum). The maximum density variation is 0.693 in this case.

In this case the computational mesh was formed by 7753 elements. (The mesh is refined in the vicinity of the
shock wave.) The stabilization parameters in scheme (38) were chosen m1 ¼ m2 ¼ 0:2. Numerical experiments
show that these coefficients give good results also for other problems and/or grids. They were used with suc-
cess, e.g. for the solution of transonic and hypersonic flow past an airfoil.

It follows from the examples presented in Section 6.1 that the proposed numerical method allows the solu-
tion of compressible flow with low Mach numbers. The computed low Mach number compressible flows
approximate very well the corresponding incompressible flows. The maximum density variation is negligible
Fig. 11. Transonic flow through the GAMM channel, Mach number isolines.

Fig. 12. Transonic flow through the GAMM channel, entropy isolines.

Fig. 13. Transonic flow through the GAMM channel, density distribution on the lower wall.
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in comparison with the transonic example. This means that the computed low Mach number flow behaves as
incompressible flow. Section 6.2 demonstrates that the method is also suitable for the numerical solution of
high speed transonic flow.

In the computational process, the CFL number from the stability condition (24) can be chosen very large.
Namely, during the computational process, the CFL number was successively increased from 30 up to 3� 103

or 3� 106 in the case of transonic flow from Section 6.2 or in the case of low Mach number flows from Section
6.1, respectively. Thus, the scheme is practically unconditionally stable.

7. Conclusion

We have presented an efficient higher-order numerical scheme for the solution of the compressible Euler
equations. It is based on several important ingredients:

� the application of the discontinuous Galerkin method for the space discretization,
� special treatment of boundary conditions,
� semi-implicit time discretization,
� suitable limiting of the order of accuracy in the vicinity of discontinuities,
� the use of superparametric elements near curved parts of the boundary.

The presented method behaves as unconditionally stable and appears to be robust with respect to the mag-
nitude of the Mach number. It allows the numerical solution of high speed transonic flow as well as low Mach
number flow, using the Euler equations in the conservation form with conservative variables.

The method was tested on several examples proving its accuracy and robustness with respect to the Mach
number. The comparison of the developed semi-implicit method with explicit Runge–Kutta schemes shows
that the Runge–Kutta schemes fail, when they are applied to the solution of low Mach number flows, in con-
trast to the semi-implicit method. It follows from numerical experiments carried out in [8] that even for higher
Mach number flows the semi-implicit method appears more efficient than the Runge–Kutta methods.

Future work will be concentrated on the extension of the method to the solution of compressible viscous
flow, combining the DGFEM with anisotropic mesh adaptation. Another important issue is the theoretical
justification of the developed technique using a multiscale analysis or finding limitations of this method with
respect to results obtained in [15]. This represents a difficult and completely open problem.
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